Neural Network Optimization Based on Complex Network Theory: A Survey
نویسندگان
چکیده
Complex network science is an interdisciplinary field of study based on graph theory, statistical mechanics, and data science. With the powerful tools now available in complex theory for topology, it obvious that topology models can be applied to enhance artificial neural models. In this paper, we provide overview most important works published within past 10 years topic theory-based optimization methods. This review up-to-date optimized systems reveals fusion networks improves both accuracy robustness. By setting out our findings here, seek promote a better understanding basic concepts offer deeper insight into various research efforts have led use today.
منابع مشابه
A Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory
The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...
متن کاملA Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory
The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...
متن کاملNeural Network Imputation in Complex Survey Design
Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertaint...
متن کاملArtificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine
In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...
متن کاملNanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11020321